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Synopsis 

A quantitative analysis is presented for predicting the particle size distributions obtained in 
emulsion polymerization. The results obtained are compared with experimental data in terms of 
the particle-size-distribution curves as well as the statistical parameters of the distributions. 
Comparisons are made for changes in initiator level, surfactant level, water:monomer ratio, and 
temperature. The manner in which these variables change the distributions and the reasons for 
these changes are identified. The distribution of radicals among particles of different sizes is seen 
to be significant. Large particles are expected to contain a greater number of radicals per particle 
than the smaller ones in the same latex. The effects of such a radical distribution upon the properties 
of the latex are discussed. 

INTRODUCTION 

Particle size and molecular weight distributions of synthetic latices are detailed 
blueprints of the series of events which embody the process of emulsion poly- 
merization. These distributions are direct results of the controlling parameters 
of the reaction, and their investigation provides a means of critically evaluating 
one’s understanding of the process. It stands to reason then that the ability of 
forecasting these distributions, in a fashion which is free from prior assumptions 
of the form of the distributions themselves, would be a useful tool to both the 
practitioner and the researcher. The intent of this paper is to present such an 
approach for the quantitative prediction of particle size distributions in emulsion 
polymerization. A further publication will present the sequel for the molecular 
weight distribution. 

Only a small portion of the emulsion polymerization literature has been de- 
voted to the subject of particle size distributions. This is undoubtedly due to 
the difficulties involved in either experimental or theoretical investigations of 
this parameter. Even for the well-studied polystyrene system, Gerrens’sl work 
provides one of the few extensive sets of experimental results showing the in- 
fluence of recipe and temperature changes upon the resultant particle size dis- 
tributions. On the theoretical side, contributions have been made by Gardon? 
O’Toole? Watterson and Parts: Sundberg? and most recently by Min and 
Ray.6 

The discussion which follows is largely based on the work accomplished in Ref. 
5 and is meant to offer some rather interesting implications of Harkins’ mecha- 
nistic concepts7 of the emulsion polymerization process. 

* Present address: Department of Chemical Engineering, University of New Hampshire, Durham, 
N.H. 03824. 

Journal of Applied Polymer Science, Vol. 23,2197-2214 (1979) 
0 1979 John Wiley & Sons, Inc. 0021-8995/79/0023-2197$01.00 



2198 SUNDBERG 

QUANTITATIVE DESCRIPTION 
The development which follows will make use of the standard reaction 

mechanisms of free radical polymerization: 

Initiation 

k P  

k t ,  CTA 

Mn- + M -+ Mn+l. 

Mn. + CTA -----tPn + M I .  

M,. + M,. + P n + ~  

Propagation 

Chain transfer 

Termination 

- 

k t  

where I represents the initiator, R- are the primary radicals, M is the monomer, 
M,. are the polymer radicals of length n, CTA is the chain transfer agent (may 
be monomer, polymer, regulating agent), and P, represents the dead polymer 
chains. Since the latex system is heterogeneous, the concentrations of the above 
species must be defined relative to the appropriate phase volume (i.e., I and R. 
to the water phase, and the remainder to the oil phase). The rate constants are 
those for decomposition, initiation, propagation, chain transfer, and chain ter- 
mination by combination, respectively. 

The heterogenous nature of the latex system makes it necessary to consider 
a fairly large number of assumptions even for the simplest model. Most of these 
result from the utilization of Harkins’s mechanism and the Smith-Ewart case 
I1 to describe the process. The present discussion is limited as follows: 

isothermal, batch reactor operation 
particles absorb radicals from the aqueous phase at a rate proportional to their 

no radical desorption from the particles 
no particle coalescence 
monomer and polymer are mutually soluble 

surface area 

Model Development 
Although size differences between particles are considered, it is assumed that 

no particle will contain more than a single free radical.* With this in mind, it 
is possible to describe the particle-size-distribution frequency function, N; (r3,t) ,  
by 

Total number of particles between 
sizes x and y which contain i radicals 

ly Ni(r3, t )  d(r3)  = 

Total number of particles in 
system between sizes x and y 

l ’ ~ k ( r 3 , t )  ci(r3) 

where N ; ( r 3 , t )  = N ; ( r 3 , t )  + Nb(r3,,t) and Ni(r3, t )  has the dimensions of moles 
(of particlest) (literH20)-’ (r3)-l. The reason that the particle number is written 
as a function of the particle radius cubed (r3)-1 and time ( t )  is that the resulting 
equations are more easily solved using r3 rather than r .  This is discussed more 
fully in the Appendix. 

* Models without this restriction have been developed in Ref. 5. 
+ A “mole of particles” is taken to be 6.023 X 1023 (or Avagadros number) particles and is used 

merely for convenience. 
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The consideration of the size distribution allows one to write the combined 
surface area of the polymer particles (per liter of water) as 

A, = 47rN~, 1Lr2N’(r3 , t )  d(r3)  (1) 

and the total surface area per liter of water S’ as that of the micelles plus the 
polymer particles, 

(2) 
where N A ~  is Avogadros’ Number, r, is the radius of the micelles, and m is the 
number of micelles (molesfliter of water).* 

s‘ = 4m-L NAvm 4- A, 

A t  this point, population balances must be written for 

Rate of change in the 
number of active par- = cles grow into size - 
ticles in size range x 
to Y 

polymer particles. Following Behnken et a1.,8 

Rate at which parti- 

range at x 

Rate at which particles shift 
populations due to 
absorbance 
of a free radical from the 
aqueous phase 

+ 

the active and inactive 

Rate at which parti- 
cles grow out of 
size range at y 

In the nomenclature set forth here, for particles containing one growing radical, 
this balance becomes 

A ly Ni(r3,t) d (r3) = H(+,t) - H(y, t )  at 

+ R 4?rNAv S‘ J y  r2[Nb(r3,t) - N;(r3,t)] d ( r3 )  

Here R is taken to be the total rate of free radical generation in the aqueous 
phase. 

The rate at which particles grow past size r3 may be written as 

N;(r3) is used here because only the active particles grow. The rate of volumetric 
growth of a polymer particle, d (r3)/dt, has been developed by Gardon9 as 

where 

and i = number of radicals in a growing particle. 
K = (3/*7r)(kp/N~v)(dm/dp) [8/(1 - e)] x 103 

Here k ,  is propagation rate 
constant, d ,  and d ,  are the densities of monomer and polymer, 8 is the volume 
fraction monomer in the particle, and 103 is simply the conversion factor between 
cm3 and liters (required when k ,  is expressed in liters and r in cm). For this 
model, i = 1 and 

H(r3) = KNl(r3,t) 

* Computations for m and rm are shown in the Appendix. 
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But 

by definition, and the population balance can be written as 

Since the integrand vanishes for an arbitrary size interval (x ,y) ,  it must be 
identically zero, leading to 

+ R r2[Nb(r3, t )  - N;(r3 , t ) ]  
dN ;( r3,t ) = -K dN;(r3 , t )  

dt d (r3)  S‘ 
A similar analysis for the inactive particles leads to 

dNb(r3,t) 4 a N ~ , ,  
=R-  r2[N;(r3, t )  - N&r3,t)]  at S‘ 

where there is no partial derivative with respect to (r3) because inactive particles 
cannot grow until they become active. Implicit in the active particle relationship 
is the assumption that the volume fraction of monomer 0 is not a function of 
particle size in the range of interest.1° 

Before proceeding with the rest of the analysis, it is useful to put the population 
balances in dimensionless form. This is accomplished by choosing p as the di- 
mensionless size parameter and dividing the expressions through by Kmo( 1 - 
O)/(OrL), where rno is the initial number of micelles, expressed as moles per liter 
of water. Thus 

p E r/rm 

7 t(dm/dp)(kp/Urn) 
where 

urn E (4/3)7rr3,NAv x 10-3 = micelle volume, liters 
Ni = rLNi(r3,t)/rno = (total number of particles)/(initial number of micelles) 

S = S’/(47rriNAvrno) = (total surface area)/(initial surface area of micelles) 
Taking 

R = 2fkd1 = 2fkd10 eXp ( -kdt)  

where I is the initiator concentration in the water phase, kd is the decomposition 
rate constant, and f is the radical efficiency factor henceforth taken to be unity. 
Proceeding, 

(kd/kp)(lO/rnO)(dp/d,)u, 

6 3 (kd/kp)(dp/dm)Um 
The dimensionless rate expressions now appear as 
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The average number of radicals per particle Ti is readily seen to be 

(5) 
- n =  J m N i d ( p 3 ) / ~ m ( N i + N o ) d ( p 3 )  

and average particle size (root-mean-cube radius, rRMC) is 

where 

N = N 1 +  No 
Because the total surface area S is involved in the particle balances, it is nec- 

essary to express its time behavior. As noted in Eqs. (1) and (2), 

Normalizing S' with respect to the total initial micelle surface area, 4?rr;N~,mo, 
and incorporating the dimensionless parameters p and N ,  one obtains for the 
total dimensionless surface area, 

The ratio of m/mo is described by X for convenience and is calculated based on 
the restriction that as long as any micelles remain in the system, the total surface 
area must be constant and equal to that provided by the initial micelle surface. 
This requires S to be constant at 1.0 throughout this period and thus 

x = 1.0 - J m  pNd(p3) (8) 

On this basis the micelles are seen to disappear by supplying soap for the growing 
polymer particles as well as providing the source of new polymer particles. Thus 
the total dispersed phase surface area S remains constant as long as there are 
micelles in the system and then increases after that. When the micelles have 
been depleted, X = 0 and S = 1; p2N d(p3) .  

The rate of conversion of monomer to polymer is one of the more important 
items to consider and can be simply expressed as 

where M is the number of moles of monomer in the latex expressed per liter of 
water and M p  is the monomer concentration within the polymer particles. M p  
is equal to O h ,  where u is the molar volume of the monomer. The fractional 
conversion C may be written as (Mo - M)/Mo, where Mo is the initial value of 
M. Now 

In dimensionless form this becomes 
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where 

P = (u,/u)(mo/Mo)(~p/dm) 
At this point we have all of the relations necessary to evaluate the kinetic be- 

havior and particle-size-distribution development during the reaction. Those 
relationships are Eqs. (3)-(9). All that remains is to solve these differential 
equations. 

Solution of Model Relationships 

Equations (3)-(9) form a set of simultaneous, partial differential equations 
(actually integrodifferential equations) and require solution by numerical in- 
tegration. The numerical techniques employed here utilize the method of 
characteristicsll and are discussed in the Appendix. 

Since the relationships of interest are partial differential equations, their so- 
lutions require both initial and boundary conditions. Most of these are obvious 
but those for the active particles are not and are developed in the Appendix. 

Initial conditions at  T = 0, 

x = 1.0 

c = o  
No = 0 for all p 3  

N1 = 2 4 1  - 8)/8 at p 3  = 1 

N1 = 0 for all p 3  > 1 

Boundary conditions: a t  p 3  = 1 and at all times 

No = 0 

N1 = 2a exp(-dr)[(l - O)/O](X/S) 

As shown in the Appendix, the set of differential equations involved here are 
of the hyperbolic form and have the natural coordinate system described by 
d(p3)ld7 = 0,8/(l - 8). This is to be interpreted as meaning that a stable nu- 
merical solution will be obtained as long as the solution follows the path of the 
natural coordinate system. This requires that the step sizes chosen for the nu- 
merical integration retain the relationship that A(p3)/A7 = 8/(1- 8) at all times. 
A much more detailed discussion of both stability and convergence of the nu- 
merical solutions is presented in Ref. 5. 

The actual computations were accomplished using the method of lines,I2 which 
consists of discretizing one of the independent variables ( p 3  in this case) by using 
a suitable finite difference approximation (a first-order backward difference was 
used here). This converts the partial differential equations into a system of 
difference-differential equations. The relationships were then solved at each 
characteristic grid point by the method of Runge-Kutta'3 as modified by 

Since Eq. (9) is actually an integrodifferential equation, care must be taken 
to evaluate the integral at each grid point. The simplicity of the trapezoid rule 
was made use of for this purpose. 

An important point to emphasize is that in order to calculate the dimensionless 

~i11.14 
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coefficients (e.g., a and 6) one needs to know the micellar radius. This radius 
is also the lower boundary of the particle size distribution. It can be easily cal- 
culated if one knows the surface area covered by one soap molecule, along with 
the number of soap molecules per micelle. Since the latter number may be in 
dispute, a series of computations were performed which used several different 
values of the latter quantity ranging between 50 and 100. These results are 
detailed in Ref. 5 and show that the choice of this parameter has absolutely no 
effect upon the predictions of the model. The dimensionless variables N ,  p, and 
T are obviously dependent on the choice of this parameter, but the absolute 
number of particles N’, particle size r ,  and reaction time are not. This stands 
to reason since the important physical parameter is the total surface area of the 
soap molecules available for particle formation. 

RESULTS AND DISCUSSION 

The solution of the model equations [(3)-(9)] subject to a choice of formulation 
and reactor conditions results in a prediction of the particle size distribution at 
any time during the process. This distribution would be expected to change 
substantially with increasing monomer conversion up until the time at  which 
all of the remaining monomer is located within the existing polymer particles. 
Thus, during what is commonly referred to as phase I11 or interval I11 of emulsion 
polymerization, one should only expect to see a slight shrinkage of each particle 
(due to the higher density of most polymers as compared to their monomers) as 
long as there is no particle coalescence. Min and Rays have included a coales- 
cence mechanism in their models. 

Aside from the particle size distribution itself, the detailed nature of the results 
allows a closer look a t  the radical distribution among particles of different sizes 
and also the reaction rate as a function of time. The following discussion will 
treat each of these items separately. 

Particle Size Distributions 

It is possible to develop distributions based on radius, area, or volume. Since 
the volume distribution is essentially equivalent to the weight distribution, it 
is one which will be discussed here. Beyond the graphical representation of the 
distribution, discussion will include the statistical aspects of the distributions. 
These parameters include the mean, the standard deviation (absolute and relative 
to the mean), and the skewness (nonsymmetry). 

Typically one is concerned with the effect of changes in the recipe or tem- 
perature on the particle size distribution. Figure 1 shows the anticipated particle 
weight (volume) distributions for polystyrene latices at  50°C resulting from up 
to a 10-fold change in the initiator concentration, with all other variables held 
constant (see Appendix for the recipe, rate constants, and dimensionless pa- 
rameters). These curves correspond to the time in the reaction where all of the 
styrene monomer is contained within the polymer particles. This corresponds 
to about 42% conversion for this set of conditions. Barring any particle coales- 
cence, the curves would be the same at  full conversion, except for a slight decrease 
in the mean size due to particle shrinkage as mentioned earlier. It is obvious 
from the curves alone that both the mean and the standard deviation decrease 
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Fig. 1. Particle size distributions for various initiator levels. Recipe listed in Appendix 111. 
Minimum value of p is 1.0 but it is so close to zero on this scale that the difference cannot be distin- 
guished. 

as the initiator level is increased. This behavior is as expected since the total 
volume of polymer particles must be the same for all the distributions (same total 
amount of polymer present-seen here as the same area under each curve) and 
at  the same time there should be more particles present at  the higher initiator 
concentrations. One additional point to note is that all of the curves are skewed 
toward the smallest particle size. This is seen to be the case for all conditions 
employing the standard batch reactor. 

Figure 2 is a reproduction of experimentally measured particle size distribu- 
tions obtained by Gerrens.l These data are for polystyrene latices polymerized 
at  45°C and show the results of greater than a 10-fold change in the initiator 
charge. Note that the results are qualitatively the same as those predicted and 
shown in Figure 1, including the skewness toward the small particles. 

Although the predicted results are not for the same exact formulation condi- 
tions as used by Gerrens (see Appendix VI), a comparison of the statistical 
properties of these distributions serves to quantify these comparisons to a large 
extent. Table I is such a comparison for the mean particle volume (relative to 
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Fig. 2. Experimental particle size distributions for various initiator levels after Gerrens,' repro- 
duced with permission of publisher, Springer-Verlag. 

that for the base recipe), the standard deviation u (again relative to that for the 
base recipe), and the coefficient of variation v (the standard deviation expressed 
as a percentage of the mean). The agreement between theory and experiment 
is quite good and both show that the distributions become narrower on both an 
absolute and relative basis as the initiator level is increased. 

Comparisons between theory and experiment for variations in surfactant level, 
temperature and monomer/water ratio are shown in Table 11, with x, y, and z 
having the same meaning as in Table I. All of these results apply at the end of 
phase I1 when all of the monomer is contained within the polymer particles 
(roughly around 40% conversion for most of these cases). Attention should be 
paid to the direction and extent of the trends seen and not necessarily to the 
absolute numbers themselves, as the total recipe conditions used in the simula- 
tions did not precisely match those of Gerrens' experiments (see Appendices I11 
and VI). 

TABLE I 
Effect of Initiator Level on Particle Size Distributions 

A. Gerrens' data' 
Initiator levela Ix 2 x  5.3x 
Mean volumeb 1 .oy 0 . 7 9 0 ~  0 . 5 6 7 ~  
U C  I.0Z 0.7302 0.5102 
4%) 33.8 31.3 30.4 

Mean volume 1.oy 0 . 7 7 5 ~  0 . 5 4 2 ~  
U 1.02 0.7702 0.5322 
U(%) 31.8 31.6 31.3 

B. Predicted results l x  2 x  5x 

lox 
0 . 4 7 1 ~  
0.3692 

26.5 
1 ox 
0 . 4 1 2 ~  
0.4032 

31.1 

a x = original initiator level (slightly different for simulations and actual data). 
b y = average particle volume for 1x initiator level. 

z = standard deviation for l x  initiator level. 
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TABLE I1 
Statistical Comparisons of Experimental and Predicted Distributions 

A. Surfactant Level 

Surfactant level 
Mean volume 

U(%) 

Predicted results 
Surfactant level 
Mean volume 

4%) 

Gerrens' data 

U 

U 

B. Temperature Level 

Temperature ("C) 
Mean volume 

U(%) 

Predicted results 
Temperature ("C) 
Mean volume 

4%) 

Gerrens' data 

U 

(r 

C. Monomer: Water Ratio 
Gerrens' data 

M :  W Ratio 
Mean Volume 

4%) 
Predicted results 

M :  W Ratio 
Mean Volume 

U(%) 

U 

U 

1x 
1.oy 
1 .02 

37.8 

l x  
1.oy 
1.02 

18.1 

40 
1.oy 
1.oz 

46.7 

40 
1.oy 
1 .oy 

31.4 

1:9.16 
1.oy 
1.02 

32.3 

1:2.53 
1.oy 
1.02 

35.0 

1.87~ 
0.688~ 
0.7452 

40.8 

2x 
0.653~ 
0.8732 

24.5 

50 
0.900~ 
0.6762 

35.7 

50 
0.565~ 
0.5622 

31.3 

1:5.74 
1.79~ 
1.692 

30.6 

1:1.85 
1 . 4 1 ~  
1.332 

33.3 

3.75x 
0.443~ 
0.5552 

47.3 

4x 
0.398~ 
0.6772 

31.3 

60 
0.624~ 
0.4142 

30.9 

60 
0.352~ 
0.3462 

31.0 

1:4.02 
2.84~ 
2.252 

25.6 

1:1.26 
2.02y 
1.832 

31.9 

7 .52~  
0 .241~  
0.3482 

54.5 

8x 
0.3ooy 
0.5452 

33.3 

1:3.00 
4 .03~  
2.492 

20.0 

1:1.01 
2.53~ 
2.212 

30.7 

With respect to variations in surfactant level, it can be seen from both results 
that while the average particle size and the standard deviation decrease with 
increased surfactant charge (as would naturally be expected), the distributions 
become significantly broader when viewed relative to the mean (i.e., Y increases). 
This is unlike the effect of increases in the initiator concentration and serves to 
underscore the independent control of each variable during the particle formation 
period. The reasoning behind this is that the monomer conversion at  which 
particle formation is completed is proportional to the power of the surfactant 
level and to the negative l/5 power of the initiator leve1.5J5 The full relation is 
shown as 

where Cf is the fractional monomer conversion a t  which particle formation is 
complete, K is a constant, sc is the surfactant level, 10 is the initiator level, Mo 
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is the overall monomer level (expressed as moleshiter of water), k ,  is the prop- 
agation rate constant, k d  is the decomposition rate constant for the initiator, and 
d, and d, are the densities of the polymer and monomer, respectively. Thus 
while the average particle size must be smaller at higher surfactant levels (as well 
as the absolute standard deviation), the relative breadth of the distribution will 
be greater since it has been formed over a larger range of conversion. Equation 
(10) is the mathematical equivalent of the relation developed by Gardon9 for P,,, 
the volume of polymer produced up to the completion of particle nucleation. 

Equation (10) is useful in interpreting the effect of temperature and mono- 
mer:water ratio as they influence the particle size distribution. It is well known 
that an increase in temperature decreases the average particle size and the ab- 
solute standard deviation, and Eq. (10) would indicate that when the activation 
energy for k d  is greater than that for k ,  (as is the case for potassium persulfate 
and styrene) then Cf would decrease with an increase in temperature and thus 
produce a narrower distribution of particle sizes. This is cearly seen in both 
Gerrens’ data and the model predictions, although the theoretical results appear 
to be more sensitive to temperature (for the mean and a) than the data. This 
may indicate that the activation energies used in this study are somewhat in- 
correct.* 

Increases in the latex solids content through increased monomer to water 
charge should produce larger particles as seen in both Gerrens’ data and pre- 
dictions. Because the surfactant, initiator, and temperature determine the point 
a t  which particle formation is complete, the absolute mass of polymer formed 
at  this point should be independent of the total monomer ~ h a r g e . ~  Thus, when 
the monomer conversion is expressed as a fraction of the total monomer charge, 
it should decrease linearly with increasing monomer charge, as shown in Eq. (10). 
This suggests that the distribution should be narrower relative to the mean, but 
broader on an absolute basis. This behavior is clearly seen in both the experi- 
mental and theoretical results in Table 11. 

The significance of using and v to describe the breadth of the distribution 
is that u always increases with the average particle size, while v may increase or 
decrease depending on which of the experimental variables are changed. The 
level of monomer conversion at  which particle formation is complete is a useful 
guide to anticipating the expected change in v. 

Reaction Rates 

The overall reaction rate is one of the more practical results desired from a 
mathematical model. Such predictions are relatively easy to check against ex- 
perimental data. The analysis presented here through Eq. (9) is limited to those 
conditions under which every particle in the latex is allowed a maximum of a 
single radical. This will be the case for many small particle sized latices (and 
even larger ones at  low initiator levels) at conversions below about 50%. For 
polystyrene, phase I1 of the reaction ends at  about 40% conversion at  5OoC and 
the following discussion will be limited to conversions below this level. 

Figure 3 is a plot of calculated monomer conversion versus time (dimensionless 
7 )  for three different surfactant levels. The recipe conditions corresponding 

* kd was taken as that value obtained in pure water while it is known, but uncharacterized, that 
surfactants and monomers influence the initiator dissociation reaction.22 
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DIMENSIONLESS TIME k X  Id) 
Fig. 3. Conversion profiles for various surfactant levels. 

to this plot are similar to those of Figure 1 but a t  an initiator level of 0.27 parts 
and at  surfactant levels of 0.90,1.80, and 5.4 parts. The nonlinearity in these 
curves a t  low conversion has been noted by others but is somewhat difficult to 
show e~perimental ly .~~ This behavior results from the fact that just after the 
start of the reaction there are very few particles but they all contain one radical. 
Much later there are many particles but on the average (see discussion of the 
radical distribution below) half of them contain a single radical and half contain 
none. Thus ii starts out a t  1.0 and gradually approaches 0.5. Counteracting 
this decrease in i i  is the very rapid increase in the number of particles early in 
the reaction and thus the reaction rate (the product of it and N') is seen to go 
through a maximum. This behavior is displayed in Figure 4 as a plot of the re- 
action rate a t  any time RR relative to that at the end of the phase 11, RR11-111. 
Very similar results have been shown by G a r d ~ n . ~ ~  

1.5 

1.0 
A 
a 
a 

a 
2 

0 . 5  

0 

1 2  m -  

Y I 6.82 
2 2.54 
3 9.40 

0 . 5  1.0 

DIMENSIONLESS TIME (dXd 

1.5 

Fig. 4. Relative reaction rates for various surfactant levels. Arrows mark the end of the particle 
formation period. 



PARTICLE SIZE DISTRIBUTIONS 2209 

Figure 5 shows the agreement between the model presented here and recent 
experimental results obtained in this laboratory by Bryers.lG These data are 
for polystyrene latex produced at 5OoC by the recipe noted in the figure caption. 
Other comparisons can be found in Ref. 5 and show good agreement between 
theory and experiment. 

Radical Distribution Among the Particles 

The type of model presented here makes it possible to obtain information 
regarding the number of radicals housed within particles of various sizes. These 
results are described as the average number of radicals per particle as a function 
of the particle size. Figure 6 is an example of the expected trend (at about 32% 

0 

0 EXPERIMENTAL 

----- THEORETICAL 

REACTION TIME (HRS.) 

Fig. 5. Theoretical and experimental conversion profiles. Recipe-180 parts water, 100 parts 
styrene, 0.3 parts potassium persulfate, 1.0 parts sodium oleate. 
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3 -3 DIMENSIONLESS PARTICLE WLUME ( p X 10 ) 

Fig. 6. Radical population versus particle size. Recipe shown in Appendix I11 with initiator level 
at 0.27 parts. 

conversion, when the period of particle formation was complete a t  16.5% con- 
version) and clearly shows that the larger particles in the system should contain 
a greater average number of radicals than do the smaller particles. This has an 
important effect on the polymer molecular weight produced in particles of dif- 
ferent sizes, as will be discussed in a subsequent publication. The upper limit 
to this radical population is one per particle and is simply a result of the re- 
striction for this model that any given particle may contain either a single radical 
or none at  all. A similar model without this restriction is presented in Ref. 5 but 
its solution demands extensive computer time and memory. 

The reason that the radical distribution appears as it does is because of the 
fact that the leading edge of the particle size distribution is controlled by the 
particle, which was the first to be formed and which has escaped any further entry 
of a free radical from the aqueous phase. Thus it has experienced a constant 
rate of volumetric growth throughout the polymerization reaction and only stops 
growing when all of the remaining monomer is contained within the polymer 
particles. It has therefore always had an average of one radical per particle. 
Following this trend backward in size, one can see that the particles at a smaller 
size are made up of those particles which were formed early in the reaction and 
did not receive a second radical (thus terminating the reaction within the particle) 
until late in its life, combined with those which formed later but which have 
sustained an uninterrupted growth. In this manner the entire radical distri- 
bution among the particles can be justified. In spite of this, it is interesting to 
note that when all are averaged together, the entire particle population contains 
on the average of one-half a radical per particle. This is subject only to the re- 
strictions that the conversion has progressed far enough into phase I1 that the 
overall reaction rate has steadied out (refer to Fig. 4) and that any particle is 
limited to a maximum of one radical. 

One of the results of this distribution of radicals is that the breadth of the 
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particle size distribution would be expected to change with increasing polymer 
conversion. Table I11 presents the statistical parameters of the expected volume 
distribution for a polystyrene latex at  various stages of conversion. In this case, 
the period of particle formation was expected to be complete a t  about 18% con- 
version. The latex formulation is shown in Appendix I11 at 0.27 parts of initiator. 
As can be seen from the results, the breadth of the distribution increases sig- 
nificantly when viewed on an absolute basis (via a) but actually narrows some- 
what when viewed relative to the mean (Y). Also, the skewness toward the smaller 
sizes becomes increasingly pronounced with time. This behavior is in good 
agreement with the experimental results of G a r d ~ n . ~ ~  

CONCLUDING REMARKS 

It has been shown that particle size distributions calculated on the basis of 
Harkins’ mechanism of emulsion polymerization are in reasonable agreement 
with experiment. Hopefully these results will strengthen the practical utilization 
of such mechanistic guidelines for systems similar in their behavior to polystyrene 
and offer a reasonable position from which to apply modifications for systems 
outside this range. It should not be interpreted, however, that the micellar 
theory of particle nucleation be accepted in its entirety, but simply that for many 
practical applications one can use this simple concept without deriving significant 
error. When working at  surfactant levels close to, or below, the critical micelle 
concentration, these concepts will not lead to useful results. Particle nucleation 
in this region most likely takes place by the solution polymerization of the 
monomer dissolved in the water, followed by precipitation and surfactant ab- 
sorption a t  some critical polymer length. Other contributors9J7 have treated 
these areas in the past. 

The author wishes to acknowledge the helpfulness and contributions of Dr. John D. Eliassen. Also, 
some of the reviewers’ comments have been very helpful. 

APPENDIX 

I. Boundary and Initial Conditions for Active Particles 

In order to obtain the proper boundary and initial conditions, one must con- 
sider what takes place at  the lower boundary [i.e., at ( p 3 )  = 11. At this boundary, 
the particles must be of micellar size, yet in order to be polymer particles they 
must have or have had a radical within. However, as soon as a radical enters a 
micelle, the particle begins to grow away from the lower boundary. This means 
that there can be no inactive polymer particles at the boundary (inactive particles 
must have contained a radical for a finite length of time and thus have grown 

TABLE 111 
Particle-Size-Distribution Changes with Polymer Conversion 

Fraction Conversion 0.112 0.240 0.383 
Mean Volume (relative) 1.0ya 1 .98~ 3 .23~ 
U 1.02 1.792 2.742 

U(%) 37.6 33.8 31.9 

y and 2 have the same meaning as in Table I. 



2212 SUNDBERG 

away from the boundary), only active polymer particles which have just that 
instant come from a micelle which absorbed a radical. 

Performing a population balance on the active particles contained in a small 
size interval of width t, which includes the lower boundary, 

+ 2a exp(-67)[1 + c/2I2[No(l + 4 2 )  - N1(l + t/2)]t/S + 2a exp(-d~)X/S 

(-41) 

Taking the limit of this expression as t - 0, one finds that 

N1(l) = 2 (Y exp(-67)[(1 - e)/e](x/s) 
under the conditions that lim,,o[dN( 1 + t/2)/d7] is finite. 

It is obvious from the above discussion that 

No(1) = 0 

For the initial conditions one simply sets 7 = 0 and X = S = 1.0 in Eq. (Al) 

(A2) 

and finds that 

N(1,O) = 2 4 1  - e ) / d  

11. Coordinate System Used and Numerical Solutions 

The form of the partial differential equations involved [Eqs. (3) and (4)] is 
determined by rewriting these equations in matrix form and following the pro- 
cedure given by Ames.ll Thus, 

1 e/(i - e)  o o 

d7  d($) 

Setting the determinant of the matrix equal to zero, one defines the “charac- 
teristic equation” as 

which is a quadratic equation in [d(p3)/d7]. Solving this equation by the qua- 
dratic formula, 

As the determinant of Eq. (A6) is positive, zero or negative, the equations are 
hyperbolic, parabolic or elliptic, respectively. Obviously the equations are hy- 
perbolic in form and the “characteristic directions” are 

(A5) -- d(p3)  - p/(l - O ) ] ,  0 
d7 
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This analysis shows that the proper coordinate system for this set of equations 
is p3 and 7,  or in dimensional form r3 and t .  It also shows that the correct step 
size relationship between p3 and 7 is to keep the ratio of step sizes equal to 6/ ( l  
- 6). Numerical solutions using these guidelines are seen to be stable and a 
discussion of convergence is given in Ref. 5. 

111. Recipe Conditions for Simulations 

The simulated particle size distributions shown in Figure 1 were calculated 
for the following conditions: water, 180 parts; styrene, 100 parts; sodium lauryl 
sulfate, 3.6 parts; K2S2O8, 0.054 parts, 0.108 parts, 0.270 parts, 0.540 parts; 
temperature, 5OOC. 

IV. Rate Constants and 0 

Values of the rate constants for initiator decomposition and polymer propa- 
gation were determined from published values according to Kolthoff and Miller's 
and Matheson et al., l9 respectively. 

A t  5OoC, 
kd = 3.64 X hr-l (at pH = 3.5) 

i Z p  = 4.36 X lo5 litedgmol hr 
The appropriate activation energies were taken as 33.5 and 7.78 kcal/gmol for 
initiator decomposition and polymer propagation, respectively. 

The volume fraction of monomer in the particles 6 was taken to be 0.6.1° 

V. Micellar and Dimensionless Parameters 

As noted earlier, the model utilizes a micellar radius and volume. This was 
done for convenience and has no effect on the computed results. For ease of 
computation, the number of soap molecules per micelle was chosen to be 100. 
The radius of the micelle was then r ,  = [100ASM/(4~)]'/~, where ASM is the 
area occupied by a single surfactant molecule when saturated on a particle sur- 
face. For sodium lauryl sulfate this value was 60 A2,20,21 giving rm = 22 8. 
Correspondingly, u, = 4.4 X lo4 A3. 

The initial micellar level rno was calculated as (SC-CMS)/lOO. SC is the 
surfactant level expressed in gmoleshiter of water, CMC is the critical micelle 
concentration for the surfactant (9.0 X gmolhiter of water for the sodium 
lauryl sulfate20). 

Densities for the monomer and polymer were taken to be 0.88 and 1.05 g/cm3, 
respectively. Using these values and the recipe conditions listed in Part I11 of 
this Appendix (for the case of 0.270 parts of initiator), the following numerical 
values were obtained for the various parameters of the model; 

I0 = 5.5 X 10-3 gmolhiter of water 
rno = 6.0 X lo-* molhiter of water 

Mo = 5.3 gmolhiter of water 
M p  = 5.2 gmolhiter of polymer particles 

\ 
a = 2.3 X 
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p = 2.9 X 

6 = 2.5 x 10-7 

VI. Gerrens’s Formulation 

Gerrens’s data1 were obtained for polystyrene latices produced from recipes 
very similar to those used in the simulations performed here. The temperature 
used by Gerrens was 45°C and the type of surfactant was unspecified, except to 
say that it was an amphoteric soap. Potassium persulfate was used as the ini- 
tiator and the basic recipe appears as water, 180 parts; styrene, 9.3 to 60 parts; 
soap, 0.313 to 4.2 parts; K2S208 0.065 to 0.974 parts; temperature 45°C. Gerrens’ 
experiments were run at the following conditions (component quantities in parts 
and temperature in “C); 

Variable Water Styrene Surfactant K2S20~  Temperature 
Initiator 180 31.3 0.522 variable 45 
Surfactant 180 31.3 variable 0.065 45 
Water:monomer 180 variable 0.464 0.790 45 
Temperature 180 31.3 1.05 0.065 variable 
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